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THE AUTOCORREIATION AND JOINT DISTRIBUTION FUNCTIONS

OF THE SEQUENCES, (I j2), (l+_)2

by

D. L. Jagerman

1. INTRODUCTION

The present-day extensive use of Monte Carlo procedures necessitates the

careful investigation of methods for the generation of random numbers. In its

simplest form, the underlying principle of all Monte Carlo procedures finds its

expression in the following theorem. 1

THEOREM: Let (x1)7 be a sequence equidistributed over (0,1), and let f(x) be a

function Riemann integrable on (0,1); then

N r
Jlf(X]) ' N f(x)dx.

Thus, the theorem states that sample averages approximate the value of an in-

tegral. It is to be noted that the only property of the sequence (xj) employed

is its equidistribution.

In applications, one may employ several equidistributed sequences simul-

taneously; accordingly, new requirements may arise. The sequences may be employed,

for example, as bases for decision, in which case it may be required that they

be independent. Thus: depending on the Monte Carlo problem considered, equi-

distributed sequences may be required to possess other random-number character-
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istics. Let the sequences (Xj)", (xJ+Tr), be designated respectively by x.

J)" .9in which T is a non-zero integer, then an additional desirable character-

istic is the statistical independence of x, x( ). A sequence exhibiting such

characteristics is ((ajc2 ))7 in which a is an irrational number. 2  The symbol

(x) is employed to designate the fractional part of x.

However, from the viewpoint of the practical utilization of the sequence

suggested above by means of a digital computer, it is necessary to replace a

by a rational number, and, hence, to lose some of the precision with which the

characteristics discussed above are satisfied. Accordingly, the sequences which

will be studied are

x . 2 )m1 , X(T) . (("(j --) 2 )) 1

The integers a, m are taken relatively prime. Of particular interest will be

the deviation of the characteristics of these sequences from the ideal random-

number characteristics.

Let p(x) be given by p(x) (x); then the autocorrelation function
2

*(¶) of a sequence (x j)1 is defined by

gm p1 1 (x) p(x~
4w Nj-ml J +

For the sequence to be studied, this takes the form

1m-l .a2 a 2( " ljl% T2) m(m)2)
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It will be shown that, uniformly in T for the range

the autocorrelation function is small; that is, quantatively,

1

I•(,)I < m" 2C1(2 +vr 2 )v(m) in 2 m+30 • 2 v(m) in m)

provided (a,m) = 1 and m > 36. The function v(m) is the number of distinct

prime divisors of m. Thus, the sequence ((! j2)om-1 is approximately uncorrelated.

Let H a(x) be given by H (x) - a + p(x) - p(x-a); then the joint distribution

function G(ap) of the sequences x, x(0) is given by

For the sequence ((I j2))ml, this takes the form
m 0

m1 a a2 a 2G(aO) m j O 0:;• j) Hm(j+K)

It will be shown that, uniformly in T for the same range stated above, and under

the same conditions on a, m,

1

IG(a, ) -o4I < m (2 +J2)v(m) (3 in2 m+88 in m)

Thus thesequnc a 2(- rn]-i ((+)2.m-l

Thus, the sequences (o j)) 1 (J-( 2))m are approximately independently
e s d m 0

equidistributed over (0,I).
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The above enumerated properties show the possible applicability of the

sequences ((- i 2 , ((-(J+r) 2) as random numbers in Monte Carlo procedures.

However, an important question is the behavior, from the viewpoint of random-

number characteristics, of consecutive portions of the complete sequences. This

is being studied by the author, and an investigation of the question will appear

in another paper.

2. ANALYTICAL DISCUSSION

The proofs of the main theorems require the establishment of several lemmas.

Lemma 1: t >, 1 I < 1

> (x) - sin 2ohx + m1,1 < h < t ith + an( 2-tll1x •

in which I1xj1 denotes the distance from x to the nearest integer. It is under-

stood that when x is an integer, the estimate I is used.

Proof: The Fourier series for p(x) is

( = sin 2 Thx

hence, it may be necessary to establish

r sin 2nhx < mi (1, )(2)h>t nh 12 1ttlIxl '

The following standard theorem derived from Abel's transformation of series will

be used:
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.I p =B b p < aB 
(3)

Also standard is the following estimate:

IA 1
IL-k sin 2p :5 1(4)

Applying the inequalities of Equations (3) and (4), one has

E sin 2,hx 1 1 (5)
h>t Ih .. 2T((t]4+)IjxI7 < Ur ' t(x

If 2irtjjxII > 1, then Equation (2) has been established. Consider now the case

2vtjixli < 1; then

sin 2vhx sin 2ffhx - sin 2irhx

h>t nh h-l 7h 1 < h < t nh (6)

Thus

E sin 21thx I<z< sin 2nhxh~t •h - + 1 <_h < t •

(7)

<1+ £ I 2%hj1Lt. < 12IIIt '<1-
-2 1 < h < t wh A

Equation (2) is now established. The Fourier series for p(x) does not equal

p(x) when x is an integer; however, with the understanding stated in the lemma,

the lemma remains correct also in this case.
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m 2 sin 21hx 3
Le a 2:< h < t

Proof: One has

sin 2vhx . 0 sin 2Ahx E sin 2whx (8)1 < ý < t sh h-1 Ah h>t Ah

Hence,

E sin 2-hx 1< 1 sin 2whx 3 (9)

The inequality of Lemma 1 was used.

Lemma 3: t > 1, r1f < 1

p(x)p(y) E sin 2%hx • sin 2A +
1 < h < t i 2 hti

5115 j([min (1+ ) (1,

Proof: Use of Lemma 1 yields

p(x)p(y) E E sin 2Ahx . sin 2Aiv +
1 < h < t 1 < I < tt 2 h+

E sin 2irhx 1mn (1, - I1 < h < t ,h2,,tilyll+

(10)

q sin 21ry •min (1,, 1
1_< _< t __ 2xt-jx +
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2 min (1, 21t-•xU) min (1, 2ut--yII

Lemma 2 allows one to write

p(x)p(y) - E sin 2xhx • sin 21ty +
1<h_< <t1 < <th

3 r,(min (1, 1+ min (1, , + (11)

2 1 1,mm�(1, 4 1.•2x mm (, 2wI.

Observing that

1 1
min (1, - min (1, - <min (1,2xtIjxII 21ttIlyll

(12)

mn (1, ) + min (1, - )

the lemma follows.

Let f(j), g(j) be given functions of the integral variable J. Define e(x)

by

e(x) - ( 2rx (13)

R by

R ,, E p.f(j))P(g(j)) , (14)
a<j<b
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Shjl by

- E be(hf(j) + £g(j)) , (15)Sh• a < j _<b

and Sf by

S E min (1, 1 (16)
f a < j < b 21ttIf(j)l1

then

Lemma 4: t >1

SIRI < F- E+22 1 < h <_ t 1 < I < t h W212 < <h_< t 1 < i < t

hU 2 f 2 g

Proof: Observing that

sin 2vhx sin 2wly = s COs 2w(hx - ly) - I cos 2%(hx + ly) (17)

one obtains from Lemma 3,

1 cos 2*(hx - ly)
21r2 1<h<t 1_< <_t hl

1 E E cos 2ghx + Ay) + (18)

2x2 1 <_h < t 1 < I < t hl

5 I[min (1, i + mi (1,
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Replacing x by f(J), y by g(J), and summing with respect to J) Equation (18)

yields

R E s 2*(hf(j) - Ig(j)) -2w 2 1 < h< 1 1 -< I< th a-< J < bc

11 1 I E cos 21(hf(J) + (19)

2x2 1< h < t i_< I< thi a < j < b

5 5jg(j)) + 2Sf 2Sg

Thus

IR1< Z• 1< _< E <tE cos 2x(hf(j) - 9g(j)) +21(2 1_< h_< t I < _< h.1 a < J <S bI

1 E E -L I E cos 21t(hf(j) + (20)2yi2 1_< h < t 1_< I < t h-C a < j :ý_b $+ (0

Ig(j)) I + Sf + S5

Since

E cos 2n(hf(j) - 9g(j)) < Sb,a < J < b h,• Z

(21)

" < bCos 2Tr(hf(j) +Ig(j)) S A

the lemma follows.
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For the sequence given by

x (j2, (a,m) - 1 , (22)

xj

it is necessary to estimate

mr-i a 2 a 2
R = =•0(m - a) P((J+ -) , (23)

in which a,p satisfy 0 < a < 1, 0 < < 1. Let

f(j) - 2 2 (4m j • '(24)

g(j) - a(j+-r) 2  p (25)

then,

Lemma 5:

Shl--< '%2m(h+9,m)

Proof: One has

II rne;;h -i a 2 a ,(,2)1
ISIh,1 = ( e- h +a26)

j-wOem h2 m•Jz )I"(6

Let

d - (hCm) ,

h" h/d ,

11 - 2/d ,(27)

ml m/d ;
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then

S - E (7_ + (j+¶) 2)~
(28)

dl m'-e ah( 2 all 2)

Let

M1" e -ah' 2 sB' 2

S' = eJE +ml -T-j ; (29)

then

Im '- a 2 2aA'¶

IS'I J e(-T7 (h' + •'j2 +-- (30)

One has

Is,12 - Mo-1 m ei - + ,(j2.2) + -2 -k)) 2 a(31)

and
I S , 1 2 m • .- l m ' = l + k .a •2 a "

k=0 j=- e n(L(h' + j,)(j2 . k2) +-•T-- (i-k)) . (32)

Let

j - k + v , (33)

in which v is a new summation variable; then

IS,12= m'-l m'k0 2a ae, 2 2a'v)IS'I ~0 ~ e(-ja(h' + 93)vk)e(L-(h' + A )v2 +-"- UP , 34
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and hence,

I,2<m''l M m 1 (2e -'

Is'1 2 m- mk e(m (h' + I')vk) (35)

Let

5 = (h' + A',m'), b w h' + ' m (36)

then

m'l-1 2a in'l 2ab ml-l 2ab

0e( hl + ')vk) - k-O e(m-- vk) - 0 e(-•" vk) (37)

Thus, one obtains

' ~m'-l ml'- 1  2ab
Is,12 <_ mv-o I mlOkEO e(2a- vk>) (56)>

By direct summation, one has

"r i 2ab
& e(;----vk) -0, m" 2abv

(39)

a mil, m"i 2abv

Since

(ab,m") = I , (40)

m"12abv at most 25 times, and hence,

IS'12 < 252m'i - 25m' (41)
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Equations (28), (29), and (41) now yield

I h11< 4-5 * - %-4-d~i r-b 42m~ + ,m). (42)

Lemm 5 yields a trivial estimate when applied to Sh,.h. It will be

important to determine an accurate estimate for this quantity.

Lemma 6: 1 <.r < M-, _< h <_ t, m > 2t

SSh,-h = 0

Proof: One has

S "e(h0ji0+1) 1 -2 2 hTlJ2 + (43)

Since (a,m) - 1, the sum in Equation (43) is zero when mn2hT. One has, for

1_ <'t, 1_< h_< t, m > 2t,

2 < 2hT < 2tT < m . (44)

Thus, m2hT and consequently, Sh,-h - 0

Lemma 7: t > 1, m> 2t, 1 < r < 1--
-- 2t

R -< %mE 1 /(h+ ,m) 5,[2, 1R /_-- - _< h <_t I <_i _< th'

ýI- . E -L ,(h - .j ) + As• + Is1r2 hi 2tf 2 g

hA
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Proof: The lemma follows immediately from Lemmas 4, 5, and 6.

Lemma 8: For t > 3, one has

1/ E E _ %1 (h -+Ilm) <Lm (5.46 ln't +

,r2.2 1 < h < t 1 < I < thl2

3.27 in t •in m)(2 + 4 -2 )v(m)

in which v(m) denotes the number of distinct prime divisors of m.

Proof: In abbreviation, define S as follows.

4 m E E 1 (h + 1, m) (45)
,r42,,2 l<h< t 1<I<thi

Let h,I be restricted so that (h + im) - d; then

s . - m ' d E E 1
Sdm 1 < h < t 1 < <th- (46)

(h + I,m) - d

The set of integers hI for which (h + 2,m) = d is included in the set for

which d I h + 2; hence

•1-m d 1 < < I

dl h+2

All integers fall into d residue classes modulo d. Let r denote the integers

0,l,2,...,d-l; then when h belongs to the residue class represented by r, I
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belong@ to the class in which d-r is a member. Let Sr denote the following

sum;

S- E 1 (48)Sr 1 < h< t 1 < I < t hi .r -(8

h-r (mod d)

J=d-r(mod d)

and S'(d) denote

S(d) , E (49)
1<h<t 1< <t

d h +i

then

S < dim S'(d) , (50),,/2 d2

S'(d) = dr= "

From the symmetry of the sum in Equation (48), it follows that

Sr Sd-r, (51)

and hence,

S+(d) - SO + 2 E S (52)
1 < r <d/2 r
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Setting h - cd and i = ed in which c > 1, a > 1 are new independent

summation variables, one has

o d 2 t/d (53)

Since, for t > 3 ,

t
•" c < i x 1 + In t < 2 in t, (54)

l<c<t Jxx

one obtains

< 4In •t (55)
d

For r satisfying 1 < r , let h - cd + r and I - ed - r; then h > 1 implies

c < 0, 1 > 1 implies e > 1, and

S < (56)
< <t-r 0 < l<e <<_.e.<L-r (56)

One has
t-r

1 + d dx 1 1 t 1 IntSt-r c-K-< +1 x- =r gln < + . (7
0<c<- - cd+r-r x -+r r r-r (7

Also, one has

1 1 <1 1
t+r ed+r 0 < t+r ed+d-- d r< t+r _ ,(58)1<e<- o d d <-- -
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in which the inequality r < 2 was used; further,-2

t+r•tr 1 < 2 + -d-' dx
-"rf 1 + < 1.3 + In t < 2.3 In t.(59)0 < a < 1--- -1 e+o fX+ L

d T 02

Thus, one has

E ~ 1 <2.3 in t (0Eed+r < d (60)

1 < < t+r.. +r
- -d

Equations (56), (57), and (60) yield

S < 2.3 in t +2.3 In2 t (61)r rd d 2

Equation (52) now takes the form

4 In 2 t 2.3 In 2 t 4.6 In t 1S(< 2d + d + 1 (62)r1 < -<
- 2

Since

4 in 2 t 4 In 2 t

d 2 (63)

and
d

+ 2 _ ,- 1 n < .3 + Inm ,(64)
1 < t i i 2 < 7

in which the inequalities In 2 < . 7 and d _< m were used, one obtains
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7.68 in2 t + 4.6 ln t ln m(65)
d d

Thus, Equation (50) yields

S<L- (7.68 1n2 t + 4.6 ln t nm) dm) (66)

Let e(a) be a multiplicative function of the integral variable a, and let

a 1 a av
a - p, P2 ... pv (67)

be the canonical factorization of a; then the following identity holds3

Z O(d) - 11 [1 + e(p) + e(p 2) + ... + O(pQ]) (68)
dia pla

Employing Equation (68) with e(d) - 1/ -d, a-m, one obtains

d1m 7 dp~ m p +• Tp+"" +( 4-p)a (

and hence,

1 < + 1 + + (70)
d~m Td p~m "7p +(-p) 2 +'"]"pIm "(

Since p > 2, one has [p/( 4-p - 1) < 2 +4-2, and hence,

df. 1 -< (2 + 2)V (m) (71)
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Equations (66) and (71) now yield

S < -ý (7. 68 ln2 t + 4. 6 ln t • n m) (2 + T2) v~ W (72)

Finally, use of the inequality 1/%2 < .71 yields the result of the lemma.

Lemma 9: For t > 3, one has

E E _. J(h - 1,m) <Lm (8.52n2 t+
,r2, 2 l<h<t 1< I< t h

h# £ 2.84 In t •In m)(2 + r 2 )v (m)

Proof: In abbreviation, define S by

S- rm E E 1_ (h -- I,m) (73),r2, 2 1 < h < t 1 < I < t hi

h~l

As in the proof of the preceding lemma, one may write

s-• W FMd E E 1 74
42I2 dim < h < t 1 < <t (74)

(h - Am) - d

h#l

Define S'(d) by

S E 1 (75)
-1 < h < t 1 < I < t h

d~h - I
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then, since the class of integers satisfying (h - Am) - d is included in the

class dlh - 1, one has

.4r== ~m• S' (d) .(76)

When h belongs to the residue class represented by r, then I belongs to the

same residue class. Let Sr denote the following sum:
ri

r 1 < h< t I (77)

h r (mod d)

Sr (mod d)

h I

then

S'(d) - dtls (78)=r-O r "(8

Setting h - cd, AI ed, the inequalities 1 < h_< to < I_< t imply 1 < c < t/d,

1 < e < t/d, and

S<c<t/d <)2 4In2 t (79)

For 1 < r < do let h - cd + r, - ed + r; then 1 < h < t, 1 < A < t imply
t-r-

0_< c < t-..r - -d and

d 1
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Sr 0< c < - 0< e < t-r (cd+r) (ed+r) (80)

- d d

c~e

Due to the symmetry of the sum in Equation (80),
I 1

r- - ' • < 2 - ed+----r (81)
sr 0 < <t-r cd+r < e < "7"

Equation (57) yields

E ~ 1 <1 In t (2

d0 -r d ; (82)
- - d

further,

1• <1 1 < t 1 (1 + In t) < 2 In_ t (83)
1 < L-_ ed d2<<lne d

- ed~ r d < e d 1 l t <(3

and hence,

S < 4 in t 4 ln2 t (84)r rd d2

Since 1 < d < m and

dl _1 < 1 + In m, 
(85)

Equations (78) and (84) yield

SI~d) < 12 In 2 t +4 In t Inm (86)d d
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From Equations (76) and (86), one now has

S (12 In 2 t + 4 in t In mi) E 1 (87)
.[23t2 dim Fd (7

Equation (71) and the inequality 1/vr2 < .71 yield the result of the lemma.

Lemma 10: (a,m) - 1, O<c<i, 0< P <1, m>2xt

SSf < 3. 2 v(m) m In m
t

S < 3 .2 v(m) m in m
g t

Proof: Consider, in the sum

S min (1, (88)f 0 IIi j2 -all
m

regrouping the terms so that all j for which

aj2 _ r (mod m), 0 < r < m (89)

constitute the sum Er; then

m-i
sf Ar= r (90)

Let

a 2 I 

()

m ,,2 p ... Pk (91)
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be the canonical factorization of m; then, by a standard theorem,3 the number

2of j for which aj = r (mod m) is T T ... Tk where T is the number of solutions
of aj2 = r (mod pi) and T is the number of solutions of aj2 r (mod 2 Also,

one has
3

TA < 2, 1 < • < k (92)

T< 4.

Hence,

TT 1 ... T k-<4.2k (93)

and, since v(m) = k + 1,

TT 1 T k 22 v(m) (94)

Thus.,

E < 2.2v(m) min (1, 1 (95)

m

and hence,

Sf < 2.2'(i) Z min (1 1 (96
r=O (96)j

m

The sum in Equation (96) will be estimated by consideration of four cases.

Case : -1 <r .1- < -.
- m -2

One has

IIrI - 1+ 1 ,- C, (97)- -o41 i nm
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and

1 min( - < +0o< r<m(a--) 2st(l +-r a)

-- - 2 
m

, m2in (I )dx,
-' 2%t(l + 2E 0)in

1 (98)

< 1 + mJ min (1, )du,
0

< +m in it

1 r
Case 2: -- <--C< o2 m -

One has

(I , -r P (99)

and
ma:

mi (1, )< 1 +f min (1, % dx

0 < r < m~l 2Tct(cz - ) 2wt(Q x-)

< i + m rmin (l, 2. t)dU , (100)
" 0

m in 2ot
Ift

Case 3: 0 <r.<2"
m r

One has

II• - •! = -• "~ , '(101)
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and

m1mr 1 )x

E minll r + min (1, 1~ )dx,
m < r <m man r 22,Tt-

< 1 + mfmin (1, 2•tu)dU , (102)

m in 2nt

1 r

Case 4: <- - cx< 1.
2 m

One has

ir_ - _ 1-- + a, (103)
m m

and

F. amin (1, 1 < 1 +1 rfti- + Ci)-
m(a + )<r<m 2tl-m

min (1, )dx,
(i + 2t -t + u)2 1 (104)

1< + min (1, T 1 )du,

m In wt
itt

One has

Sf < 2.2v(m)[ 4 + 2m In rt + 2m In 2nt] , (105)
ft At

and
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S < 8.2 v(m)[ 1 + m ln 2st] (106)
f Itt

Since m > 21t, one has in 21t < in m, and hence,

S < 8.2 v(m)( 1 + m In m] (107)
ft

Also, since m in m > 2nt, one has

Sf < 12. 2 v(m) mtln m (108)

Using the inequality A > 3 yields the result of the lemma. For the sum S 9 one

has

m-i 1 r-i i
S M E min (1, ) - min (1, - (109)
g J=0 1a(j]4 ) 2 _P)I 0 a 12 2P1

and hence, the estimate obtained for Sf above applies also to S .

It is now possible to state the first main theorem.

THEOREM 1: (a~m) - 1, m >_ 36, 1 _< T < ITm, 0 _< C1< 1, 0 _< < 1,

M-1 a 22 2_2) 2 (m
jIEOP(m -J)Pp(a(J+[)2) 1) < %m (- (2 +,T2)v( ln 2 m + 30.2v In m.

Proof: Lemmas 7, 8, 9, and 10 yield

JR1 < L-m(13.98 In2 t + 6.11 ln t • ln m](2 +% 2 )v(m)
+ 15.2 v(m) m ln m (110)

t

Since i 2 > 9.85, one also has
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Iz <.rm [1.42 In 2 t + .621 in t in .m(2 +,v2)v(m)

+ 1 5 . 2 v(m) m in . (111)
t

Choose

t ,Fm; (112)

then, since In t <- In m
2

IRI < 4 m [Z (2 +,,r 2 )V(m) ln2 m + 3 0 . 2 v(m) In ml . (113)

The conditions t > 3, m > 2st are both met by the condition m > 36. Since

m/2t -4 m, the condition 1 < T < m/2t becomes 1 _< <%Fm. The theorem is now

established.

aThe autocorrelation function of the sequence xj = •j2) is obtained

immediately from Theorem I by setting a - 0, p - 0, and recalling that *(T)

R/m. Hence, one has

THE0OR 2: (a,m) 1i, m> 36, 1 < T <4 "m

I *()l < m 2 2 (2 + %F2)v(m) in2 m + 30 . 2v(() In m)

Consider the simultaneous Diophantine inequalities

0 < (.j 2 ) <a, o< ((j+T) 2 )<Bo<j<m. (114)

Let the number of solutions of the inequalities be designated by T(c1), then
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GTa,0) (115)

a 2 {a j•2.

is the joint distribution function of the sequences (- J), (2(j+r) ). If the

sequences (- j 2 ), (_I(j+r) 2 ) were independently equidistributed over (0,1), one

would have G(ap,) - C4. It is the present object to determine the deviation of

G(aa) from the desired joint distribution o1. For this purpose, let

aH(x) = a + p(x) - p(x - a) ; (116)

then H a(x) is a periodic function with period 1 and, within the initial period,

Ha(x)-1, O<x<a,

(117)
=-0, a<x<i1.

In view of the above properties of H a(x), the enumeration T(Ci,p) is given by

T(a,•) - 4•H•( j2) H•(•(j+d) 2 ) (118)

a1 a 2-I a 2

Lemma11: ~ap) -C3 -a 2 m-l0 a 2 -+CO +

rn-I a 2 rn-1 a 2
a JEOP(-(J+r) ) + a £ p(-(J-r) - 0) +

m-1 a 2 a 2 m-- a 2 a 2JEOP(; J ) P ý(+ j%.Zo€ p (; ) p (ý(J+r)2 .

m-la 2 a 2 m-I a 2 -a) a 2
J.%P(ý J ) p(J-( ) + s) + j.o( a) , - •

Proof: Use Equations (116) and (118).
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Lemma 12 (,,m)- 1, m=>36, 1_< r<..TM, O_< a< 1, 0< P< 1,

-1 a rM-1 a 2 + -1i a J2

,T[• (2 +4T2 )v(m) in 2 m + 120 . 2(m) in m.

Proof: Theorem 1 enables the estimation of the sums of products of the p-

functions to be effected. Also observing that

rn-i a 2 rn-i a 2(19
E p(- j2) -EP(-(J+¶) ) ,(119)

m-i a 2 m-i a 2

..op(;- . ) - .oEP(;-(.+¶) - )(12 )

the lemma follows.

In order to estimate the sum of the p-functions in Lemma 12, the following

lemmas are required.

Lemma 13: (a,m) a 1, 0 < a< 1,

rn-i ha ~lim joe(-• - hO)J -

Proof: Let

(h,m) = d ,

h
h' -h, (121)

d Il
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and

m-1 a h 2

s jjoe(-l; j- h) ; (122)

then

- ha 2 m'-1 h'a 2
IS , Ij•e(- j)I = dJ e(-r" i mI (123)

One has

S12 -l '-2 h'a 2 h'a 2
Is2"d2 A• A e ('- • 2

(124)

2 m'-1 m'-l+k his 2 hia 2
kd O jk e(k-- - - k)

Introduce a new summation variable v by

j w k+v ; (125)

then

IS12 d 2  '- ml-1 2ha h'a2 d2 m'- M- 2h'_
e(=-vk) e(-- ) vO I k - )Vj (126)

VRO k0O m'O j' - 126

By direct summation, one obtains

m'-l 2h'a
kO e(=m-*-vk) - 0, m'%2h'av

(127)
a m', m'12h'av 

(

Since (h'a,m') a 1, m'12h'av if and only if m'12v which may occur at most twice.

Hence,
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IS12 < 2d 2r' = 2md (128)

The lemm follows on taking the square root.

Leame 14: (a,m) -1, 0 < a < 1,

rn-i a 2 s~pO j2 -,i <- -1rJ (h m)+6, 2"(m) ln mIJ-in m. i < k < _1 m
-- • 2

Proof: Use of LTma 1 yields

m1 a21 m-i ha 2
1 < h < t ,h J-Oe(m )

(129)

+Zom-nmin (1, 1

Setting t -= ½m and using Lemma 9, one obtains

2

rn1- a )2 - c)I < E. 1r =ie(ha 2 )1 + 6 4m2v(m)in m. (130)

The lemma now follows on employing Lemma 13.

Lemma 15: (at) - l, 0 <c a< 1, rm >36

M-i a 2

= •,0,(m j2 - a) 3.92 1m (2 + s2)v(m) inm,

Proof: One has
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Z1 I :h/•• ./ Z'-. -T• d E <./.•
Sh1<

1 < <h2[ m dim 1 < h 5 m (131)
(h,m) - d

Sdim 1 <_ h - 2/m

dlh

Let h = cd; then

E 1 < r21:m
<T dim - - 2 d _ < _

dh2 
(132)

,,m(.15 + .27 ln m) " 1

Use of Equation (71) now yields

___ 1 (hhm) < 4 ,m(. 15 + .27 In m)(2 +-[ 2 )V() (133)
Sl<h<_4m

Since m > 36, one has

.15 + .27 In m < .312 In m., (134)

and hence,

2m ( m < 312 Im (2 + 4 2 )"(I) In . (135)

1 < h < d m h
-2

Lemmna 14 now yields
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MO1 (I - a)l < 312 N'm (2 + r%2)V(m) inm + 6 •4 2 v (m) in- . (136)

Since 2/(2 +,r2) < 1 and v(m) > 1, one has

.312 (2 +,1 2)v(m) + 6 .2'(m) < 3.92 (2 +,f 2 )v(m) (137)

This proves the lemma.

THE0RE 3% (a,m) -1, m> 36, 1<¶< 4 -M,

1

IG(a,) - I < m2 (2 +% 2 ) v(" ( lin 2 m + 88 In m)

Proof: Lemmas 12,and 15 provide the following inequality.

1

G(c) -Col<m2'8 ,(2 +'2)v(m) In 2 m + (15.68(2 +'4 2 )v(m) +
(138)

120.2v(m)) In m)

Using the inequality

2Y(m) < .6(2 +-,F2 )v(m) (139)

The theorem follows.
Theorem 3 thus demonstrates that the sequences (I j 2 ), a(j+.) 2) are

approximately independently equidistributed over (0.1).
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